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Abstract. Carbon nanostructures are of considerable interest owing to their unique mechanical and elec-
tronic properties. Experimentally, a wide variety of different shapes are obtained, including both spherical
and spheroidal carbon onions. A spheroid is an ellipsoid with two major axes equal and the term onion
refers to a multi-layered composite structure. Assuming structures of either concentric spherical or ellip-
soidal fullerenes comprising n layers, this paper examines the interaction energy between adjacent shells
for both spherical and spheroidal carbon onions. The Lennard-Jones potential together with the contin-
uum approximation is employed to determine the equilibrium spacing between two adjacent shells. We
also determine analytical formulae for the potential energy which may be expressed either in terms of
hypergeometric or Legendre functions. We find that the equilibrium spacing between shells decreases for
shells further out from the inner core owing to the decreasing curvature of the outer shells of a concentric
structure.

PACS. 02.30.Rz Integral equations – 34.20.-b Interatomic and intermolecular potentials and forces,
potential energy surfaces for collisions – 62.25.+g Mechanical properties of nanoscale materials

1 Introduction

Carbon nanostructures including fullerenes, carbon nan-
otubes, nanocones, nanopeapods, nanotorii and carbon
onions have received much attention because of their
unique properties, such as their high flexibility, their high
thermal conductivity and they are presently the strongest
material known [1]. We refer the reader to [2,3] for compre-
hensive pictorial catalogues of the many diverse structures
which may arise. Their special properties have not only led
to proposals for many potential nano-devices [4–6] but also
to the desire to create further new carbon nanostructures
and the spherical and ellipsoidal carbon onions are exam-
ples of such structures. Carbon onions comprise multi-
layer composite structures and here we consider those
of both spherical and spheroidal shapes, noting that a
spheroid is simply an ellipsoid with two major axes of
equal length. Experimentally, electron beam irradiation
methods are used to modify the multi-layers of carbon
onions, but at present there are no procedures to predict
the precise shape of the resulting structures. The major
issue in this regard is the determination of the interspac-
ing layer of such structures. Recently, molecular dynamics
simulation techniques have been used to examine the for-
mation of such nanostructures. This calculation may be
effected using density functional theory and a tight bind-
ing method such as that described in [7] and [8] respec-
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tively. However, in this paper rather than undertake such
large scale calculations, we employ elementary mechanical
principles and classical mathematical modelling to inves-
tigate the interaction energies between adjacent shells of
spherical and spheroidal carbon onions, which leads to the
determination of the equilibrium spacings of such struc-
tures.

While there are a number of studies on spherical car-
bon onions [9–11], very little work has been undertaken
for other forms of carbon onions. Kitahara et al. [12]
employ an electron beam irradiation technique to ex-
perimentally create ellipsoidal carbon onions and they
also investigate the stability of these structures by using
molecular mechanics and molecular orbital calculations.
Narita et al. [13] also utilize electron beam irradiation
methods to produce tetrahedral carbon onions, and they
determine the energy levels and the density of different
states for such tetrahedral carbon onions.

For spherical and spheroidal carbon onions, this pa-
per utilizes the Lennard-Jones potential together with the
continuum approximation to determine the potential en-
ergy between two adjacent layers. The continuum approx-
imation assumes that the carbon atoms are uniformly dis-
tributed over the surface of each molecule, with a constant
atomic surface density determined simply by dividing the
number of atoms by the surface area of the molecule.
From the minimisation of the energy of the structure,
this method can be used to predict the spacings be-
tween adjacent layers and therefore the lateral and vertical
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Fig. 1. Double-shell ellipsoidal carbon onion.

dimensions for each layer of spherical and ellipsoidal car-
bon onions. From curve fitting, we obtain an expression for
the equilibrium spacing for any two neighbouring layers of
the carbon onions.

2 Interaction energies between shells

Here, we consider the interaction energy between two adja-
cent shells of an ellipsoidal (or spherical) carbon onion. We
assume that the ellipsoidal carbon onion comprises a fam-
ily of concentric nested spheroidal fullerenes located co-
axially as shown in Figure 1, noting again that a spheroid,
which is also known as an ellipsoid of revolution, is an el-
lipsoid with two of its radii of equal length.

From Figure 1, with reference to the rectangular Carte-
sian coordinate system, the parametric equations for the
outer and inner spheroids are given by (x1, y1, z1) =
(b sinφ1 cos θ1, b sinφ1 sin θ1, c cosφ1) and (x2, y2, z2) =
(d sin φ2 cos θ2, d sin φ2 sin θ2, � cosφ2), respectively, where
θ1, θ2 ∈ [0, 2π] and φ1, φ2 ∈ [0, π]. If we assume that the
interspacing along the three coordinate axes between two
neighbouring shells of the carbon onion is given by Z, then
we have � = c−Z and d = b−Z. The distance ρ between
two typical surface elements on the inner and the outer
spheroids is given by

ρ2 = (b sin φ1 cos θ1 − d sin φ2 cos θ2)2

+(b sinφ1 sin θ1 − d sin φ2 sin θ2)2

+(c cosφ1 − � cosφ2)2

= (b sin φ1 − d sin φ2)2

+4bd sinφ1 sin φ2 sin2[(θ1 − θ2)/2]
+(c cosφ1 − � cosφ2)2.

For the continuum approach, we assume that the atoms
are uniformly distributed over the surface of the molecule,
and we use a constant average atomic density which is
simply the number of atoms divided by the surface area
of the molecule. Thus, the total potential energy E for the
two molecules can be obtained by performing the surface
integrals of a potential function over the two molecules,
namely

E = η1η2

∫ ∫
V (ρ)dS1dS2, (2.1)

where η1 and η2 denote the mean surface densities of the
outer and inner ellipsoidal fullerenes and ρ is the distance
between the two surface elements dS1 and dS2 on the outer
and inner spheroidal fullerenes, which are given respec-
tively by

dS1 = b sinφ1

√
b2 cos2 φ1 + c2 sin2 φ1dθ1dφ1,

dS2 = d sin φ2

√
d2 cos2 φ2 + �2 sin2 φ2dθ2dφ2,

and the integration is performed over the entire surface of
the two ellipsoids. Further, V (ρ) denotes the interatomic
interaction potential for two typical single atoms located
one on each ellipsoid and here we adopt the classical six-
twelve Lennard-Jones potential, so that the interaction
energy (2.1) between shells of the ellipsoidal carbon onion
takes the form

E = η1η2

∫ π

0

∫ π

0

∫ 2π

0

∫ 2π

0

γ

(
− A

ρ6
+

B

ρ12

)
dθ1dθ2dφ1dφ2,

and

γ = bd sinφ1 sin φ2

×
√

(b2 cos2 φ1 + c2 sin2 φ1)(d2 cos2 φ2 + �2 sin2 φ2).

Further, we define the integrals I∗n as

I∗n =
∫ 2π

0

∫ 2π

0

dθ1dθ2

ρn

=
∫ 2π

0

∫ 2π

0

dθ1dθ2

{λ + ξ sin2[(θ1 − θ2)/2]}n/2
, (2.2)

where n = 6 and 12, λ = (b sin φ1 − d sinφ2)2 +(c cosφ1 −
� cosφ2)2 and ξ = 4bd sinφ1 sin φ2. We note that none of
the terms in γ, λ and ξ depend on θ1 or θ2. In Appendix A,
we show that the integrals I∗n can be evaluated either in
terms of hypergeometric functions or Legendre functions.
In terms of the hypergeometric function, we may deduce

I∗6 =
4π2

(λ + ξ)3
F

(
3,

1
2
; 1; κ

)
,

I∗12 =
4π2

(λ + ξ)6
F

(
6,

1
2
; 1; κ

)
, (2.3)

where κ = ξ/(λ+ ξ). Since these equations are degenerate
hypergeometric functions (see Appendix B), they can be
written as

I∗6 =
4π2

λ2
√

λ(λ + ξ)

(
1 − κ +

3
8
κ2

)
,

I∗12 =
4π2

λ5
√

λ(λ + ξ)

(
1 − 5

2
κ +

15
4

κ2 − 25
8

κ3

+
175
128

κ4 − 63
256

κ5

)
.

Thus, the total potential energy becomes

E = η1η2

∫ π

0

∫ π

0

γ(−AI∗6 + BI∗12)dφ1dφ2. (2.4)
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Table 1. Radius of each shell for a spherical carbon onion
predicted from minimisation of energy Eo/(η1η2) (2.5) and as-
suming a C60 core.

nth-shell C60 2nd 3rd 4th

Radius (Å) 3.55 7.042 10.516 13.981

nth-shell 5th 6th 7th 8th

Radius (Å) 17.442 20.900 24.356 27.811

We note that to obtain the final result for E, we need to
integrate (2.4) with respect to φ1 and φ2, and we perform
these integrals numerically. Although clearly complicated,
numerical values for these integrals can be readily evalu-
ated using the algebraic computer package MAPLE.

For the special case of the spherical carbon onion for
which all three major axes are equal, we have from Fig-
ure 1 that d = � for the core and b = c for the outer shell.
In this case, the interaction energy between shells can be
obtained explicitly, and is given by

Eo = −P6 + P12, (2.5)

where Pn (n = 6, 12) are defined by

Pn =
8π2bdCnη1η2

(2 − n)

(
1

(b + d)n−2
− 1

(b − d)n−2

)
, (2.6)

where C6 = A, C12 = B and again η1 and η2 represent
the surface densities of carbon atoms on the outer and
inner spherical fullerenes respectively. We refer the reader
to Iglesias-Groth et al. [14] for the derivation of (2.6).

3 Numerical results

Here we use the algebraic computer package MAPLE to
show graphically the relation between the potential en-
ergy and the interspacing between two neighbouring shells
for spherical and ellipsoidal carbon onions. The attrac-
tive and repulsive constants A and B for graphitic car-
bon interactions are taken to be A = 17.4 eV Å6 and
B = 29 × 103 eV Å12 [15]. Due to the short range in-
teraction of the van der Waals force, we assume that we
need only taking into account the interactions between ad-
jacent layers for the calculation of the resultant potential
energy [16].

For the spherical carbon onion, we assume that the
1st-shell, or the core, is the spherical C60 fullerene, which
has a radius of 3.55 Å. This is consistent with experimen-
tal results, where the core of a fully formed spherical car-
bon onion has the diameter of 7–10 Å [17]. From (2.5)
upon substituting d = 3.55, we may determine b or
the radius of the 2nd-shell, which is the critical value
for which the energy Eo/(η1η2) is minimum. Repeatedly,
by using the radius of the (n − 1)th-shell as the value

Fig. 2. Potential energy profile for a spherical carbon onion
showing the possible radii of the nth-shell for which the energy
is minimum.

Table 2. Radii of spherical fullerenes CN .

Fullerene C240 C540 C960 C1500

Radius (Å) 7.06 10.53 14.02 17.5225

Fullerene C2160 C2940 C3840

Radius (Å) 20.95 23.8728 27.95

of d in (2.5), we may determine the radius of the nth-
shell, b, by minimizing Eo/(η1η2). Following this proce-
dure, we obtain the radius for each shell of an eight-
layer spherical carbon onion, as shown in Table 1. These
values are the critical radii shown in Figure 2 for each
shell. We comment that the spherical carbon onion com-
prising shells with radii shown in Table 1 are approxi-
mately the structure proposed by Kroto and McKay [18]
which is the C60@C240@C540@C960@C1500@...@CN spher-
ical carbon onion, where N is the number of carbon atoms
in Goldberg fullerenes of Ih symmetry type I given by
N = 60n2, where n is an integer [1]. We refer to Table 2 for
average radii of CN , which are taken from Itoh et al. [19]
for C240, C540, C960, C2160 and C3840 and from Dunlap
and Zope [20] for C1500. For Goldberg fullerenes of Ih

symmetry type I, the average radius is approximated by
R̄ ≈ 2.4σ̄n, where σ̄ is the average bond length [9]. Using
σ̄ = 1.421 Å and n = 7, we obtain the average radius of
C2940 as shown in Table 2.

For spheroidal carbon onions, we consider two cases
using C24 [11] and C80 [12] as the core. From (2.4) with
the substitutions of c = � + Z and b = d + Z, the equi-
librium distance Z between two adjacent layers may be
obtained from the minimisation of the energy E/(η1η2).
Using a C80 ellipsoidal fullerene which has a lateral size
� = 4.73 Å and a vertical size d = 3.58 Å [11] as the
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Fig. 3. (Color online) Potential energy profile for a five-shell
C80 carbon onion.

Table 3. Lateral and vertical sizes for five-layer ellipsoidal
carbon onion where C80 is assumed inner core.

nth-shell C80 2nd 3rd 4th 5th

lateral radius (Å) 4.73 8.222 11.699 15.167 18.629

vertical radius (Å) 3.58 7.072 10.549 14.017 17.479

mean radius (Å) 4.155 7.647 11.124 14.542 18.054

Table 4. Lateral and vertical sizes for five-layer ellipsoidal
carbon onion where C24 is assumed inner core.

nth-shell C24 2nd 3rd 4th 5th

lateral radius (Å) 2.315 5.846 9.324 12.792 16.256

vertical radius (Å) 1.665 5.196 8.674 12.142 15.606

inner core, or the 1st-shell, we may determine from (2.4)
the equilibrium distance Z12 which is the critical value
shown in Figure 3 (—–) that minimises the interaction
energy between the 1st- and 2nd-shells. Knowing Z12

gives rise to the lateral and vertical sizes of the 2nd-
shell, which then become � and d in the determination
of Z23. Repeatedly, we can determine the equilibrium
spacing Z(n−1)n for the (n − 1)th- and nth-shells inter-
action and Figure 3 shows the relation between the en-
ergy E/(η1η2) and the interspacing between two neigh-
bouring shells for the ellipsoidal carbon onion with C80 as
the core. The critical values that minimise the potential
energy are the equilibrium distance between each layer of
the ellipsoidal carbon onion. The lateral and vertical sizes
for a five-shell ellipsoidal carbon onion with C80 core are
given in Table 3. Using a similar procedure to that de-
scribed above, we may obtain Table 4, which gives the
dimensions of the outer shells for the ellipsoidal carbon
onion, where C24 is the core. For the ellipsoidal carbon
onions with a C80 core, we note that the equilibrium in-
terlayer spacing between neighbouring shells is approxi-
mately 3.4 Å. Further, we find from Terrones et al. [21]

Fig. 4. Equilibrium spacing between adjacent shells of spher-
ical carbon onion assuming C60 core.

that the mean radii of C260, C560 and C980 are 7.662,
11.057 and 14.588 Å, respectively. As a result, we find from
Table 3 that assuming C80 as a core gives rise to the car-
bon onion structure C80@C260@C560@C980@C1520...@CN

where N = 20(m2 + mn + n2). As such, our study con-
firms the possible creation of the nested chiral icosahedral
fullerenes of type I symmetry as proposed by Terrones
et al. [21].

From the tables, the values of the equilibrium spac-
ing Z between two adjacent layers for both spherical and
ellipsoidal carbon onions decrease the further away the
shell is from the inner core, which results from the effect
of decreasing curvature of the spheroids. The high cur-
vature of the inner shells means that for any atom on
the surface, there can be more than one interacting atom
on the neighbouring shell. Moreover, the shells which are
further away from the inner core become more like a flat
surface, for which the interaction energy of the neighbour-
ing shells is approximately the equilibrium spacing of two
graphite sheets. The equilibrium spacing between two ad-
jacent layers is obtained approximately as 3.4 Å for both
cases. This result is in excellent agreement with the ob-
servations made by Terrones et al. [21].

The relation between the equilibrium spacing between
two adjacent shells is shown in Figure 4 for a spherical
carbon onion. Using a first order exponential curve fit-
ting technique from Microcal Origin 6.0 and the values of
constants provided previously, we may obtain an equation
which describes the interspacing between each shell of a
spherical carbon onion, namely

equilibrium spacing (Å) = 3.455 + 0.131e−1.593n, (3.1)

where n is the shell number.
For an ellipsoidal carbon onion, the relation between

the spacing number and the equilibrium distance between
each layer is shown in Figure 5. Again, using a first
order exponential curve fitting technique from Microcal
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Fig. 5. Equilibrium spacing between adjacent shells of
spheroidal carbon onions assuming C24 and C80 core.

Origin 6.0 and the values of constants provided previously,
we obtain respectively the equations which describe the
equilibrium spacing between any two neighbouring layers
for the C24 and C80 ellipsoidal carbon onions, namely

equilibrium spacing

for C24 onion (Å) = 3.458 + 0.757e−0.851n,

and

equilibrium spacing

for C80 onion (Å) = 3.453 + 0.102e−2.061n,

where n is the shell number. We comment from Figure 5
that the large equilibrium spacing between the 1st- and
the 2nd-shells of C24 carbon onion occurs due to the un-
stable structure of C24 [11].

4 Summary

In this paper, we determine the interspacing between two
adjacent layers of spherical and ellipsoidal carbon onions.
The Lennard-Jones potential together with the continuum
approximation is employed to determine the preferred po-
sition or the equilibrium distance for each layer of the
carbon onions. The analysis gives rise to the possible di-
mensions for each shell of the carbon onions. Moreover,
we observe that the equilibrium spacing decreases as the
shell is further away from the inner core and this is due
to the decreasing curvature for the larger spheroids. How-
ever, this is not the case when high temperatures and pres-
sures are applied to the onion, as shown by Banhart and
Ajayan [22]. Upon heating the particle up to 700 ◦C and
simultaneously irradiating with electrons, the interlayer
spacing in the onion is actually shown to decrease from

the outside to the inside, indicating an increasing com-
pressive stress towards the centre which gives rise to a
diamond core. Finally, we provide an approximate equa-
tion for the determination of the equilibrium spacing for
any two adjacent layers of a spherical and an ellipsoidal
carbon onion.
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vision of an Australian Postdoctoral Fellowship for N.T. and
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Appendix A: Analytical solution for I∗n in (2.2)

The integral (2.2) may be evaluated either in terms of
hypergeometric or Legendre functions. First, we consider
the integral

I∗2m =
∫ 2π

0

∫ 2π

0

dθ1dθ2

{λ + ξ sin2[(θ1 − θ2)/2]}m
, (A.1)

where m = n/2. Since the integrand is a symmetric func-
tion of θ1 − θ2, the intermediate integral I∗∗2m defined by

I∗∗2m =
∫ 2π

0

dθ1

{λ + ξ sin2[(θ1 − θ2)/2]}m
,

can be shown by differentiation with respect to θ2 to be
independent of θ2, namely

dI∗∗2m

dθ2
=

∫ 2π

0

− ∂

∂θ1

(
1

{λ + ξ sin2[(θ1 − θ2)/2]}m

)
dθ1 = 0.

Thus, we may set θ2 to be zero and trivially perform the
θ2 integration so that (A.1) becomes

I∗2m = 8π

∫ π/2

0

dx

(λ + ξ sin2 x)m
,

and we may consider the integral I2m defined by

I2m =
∫ π/2

0

dx

(λ + ξ sin2 x)m
. (A.2)

Making the substitution t = cotx we obtain

I2m =
∫ ∞

0

(1 + t2)m−1

(λ + ξ + λt2)m
dt

=
1

(λ + ξ)m

∫ ∞

0

(1 + t2)m−1

(1 + ωt2)m
dt,

where ω = λ/(λ + ξ). Now, by writing this integral in
the form

I2m =
1

(λ + ξ)m

∫ ∞

0

1
[1 + (1 − ω)t2/(1 + t2)]m

dt

(1 + t2)
,
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we can make the substitutions

z =
t

(1 + t2)1/2
, t =

z

(1 − z2)1/2
, dt =

dz

(1 − z2)3/2
,

and in the following line we make the substitution u = z2

I2m =
1

(λ + ξ)m

∫ 1

0

dz

[1 − (1 − ω)z2]m(1 − z2)1/2

=
1

2(λ + ξ)m

∫ 1

0

u−1/2(1 − u)−1/2

[1 − (1 − ω)u]m
du.

From Gradshteyn and Ryzhik [23] (p. 995, Eq. (9.111))
we may deduce

I2m =
π

2(λ + ξ)m
F

(
m,

1
2
; 1;

ξ

λ + ξ

)
, (A.3)

where F (a, b; c; z) denotes the usual hypergeometric func-
tion. We note that Colavecchia et al. [24] examine in some
details the numerical evaluation of various hypergeometric
functions.

From Erdélyi et al. [25] and on recognizing two of the
numbers ±(1− c), ±(a− b), ±(a+ b− c) are equal to each
other, it can be shown that this result admits a quadratic
transformation and becomes a Legendre function. Using
the transformation

F (a, b; 2b; 4z/(1 + z)2) =

(1 + z)2aF (a, a + 1/2 − b; b + 1/2; z2),

we obtain

I2m =
π(1 + y)2m

2(λ + ξ)m
F (m, m; 1; y2),

where 4y/(1 + y)2 = ξ/(λ + ξ). Using the definitions from
Gradshteyn and Ryzhik [23] (p. 960, Eq. (8.772.3) and
p. 998, Eq. (9.131.1))

Pµ
ν (z) =

1
Γ (1 − µ)

(
z − 1
z + 1

)−µ/2(
z + 1

2

)ν

× F

(
− ν,−ν − µ; 1 − µ;

z − 1
z + 1

)
,

and

F (a, b; c, z) = (1 − z)c−a−bF (c − a, c − b; c; z),

where Pµ
ν (z) is a Legendre function of the first kind and

in our case µ is zero, then we obtain the integral in terms
of the Legendre function which is given by

I2m =
π

2(λ + ξ)m

(
1 + y

1 − y

)m

Pm−1

(
1 + y2

1 − y2

)
. (A.4)

Appendix B: Degenerate hypergeometric
functions

Details for the degenerate hypergeometric function arising
from (A.3) are presented in this appendix. A degenerate
hypergeometric function is one which can be written as a
finite sum. For convenience, we define

Jm = F (m, 1/2; 1; z), (B.1)

where m is a positive integer. Following Erdélyi et al. [25],
since c − a is a negative integer, equation (B.1) becomes
a degenerate hypergeometric function (see formula 16,
Erdélyi et al. [25], p. 72) with the degenerate solution

F (a, b; c; z) = (1 − z)c−a−bF (c − a, c − b; c; z).

Then we obtain

Jm = (1 − z)1/2−mF (1 − m, 1/2; 1; z). (B.2)

In terms of a series, the hypergeometric function is
given by

F (a, b; c; z) =
∞∑

n=0

(a)n(b)n

n!(c)n
zn,

where (a)n = Γ (a+n)/Γ (a) = a(a+1)(a+2)...(a+n−1)
and (a)0 = 1. Here, we need to evaluate J3 and J6, and
from (B.2) we may deduce

J3 =
1

(1 − z)5/2

2∑
n=0

(−2)n(1/2)n

n!(1)n
zn

=
1

(1 − z)5/2

(
1 − z +

3
8
z2

)
,

J6 =
1

(1 − z)11/2

5∑
n=0

(−5)n(1/2)n

n!(1)n
zn

=
1

(1 − z)11/2

(
1 − 5

2
z +

15
4

z2 − 25
8

z3

+
175
128

z4 − 63
256

z5

)
. (B.3)
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